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ABSTRACT

For weather radars, range-oversampling processing was proposed as an effective way either to reduce the

variance of radar-variable estimates without increasing scan times or to reduce scan times without increasing

the variance of estimates. Range oversampling entails acquiring the received signals at a rateL times as fast as

the reciprocal of the pulse width (the conventional rate), where L is referred to as the range-oversampling

factor. To accommodate the L-times-as-fast sampling, the original formulation of range-oversampling pro-

cessing required a receiver filter with a bandwidth L times as wide as that of the matched filter (the con-

ventional receiver filter). In this case, the noise at the output of the receiver filter can still be assumed to be

white, resulting in a simplified formulation of the technique but also, and more important, in a more difficult

practical implementation since the receiver filter in operational weather radars is typically matched to the

transmitted pulse. In this work, we revisit the role of the receiver filter in the performance of range-

oversampling processing and show that using a receiver matched filter not only facilitates the implementation

of range-oversampling processing but also results in the lowest variance of radar-variable estimates.

1. Introduction

Weather radars typically sample the received signals

at a rate given by the inverse of the pulse width. Range-

oversampling processing operates on time series sam-

ples that are acquired at anL-times-as-fast rate, whereL

is the range-oversampling factor. A generalized model for

this type of processing involves two stages: transformation

and estimation (Torres and Curtis 2012). In the transfor-

mation stage, anL-by-Mmatrix of time series samplesV is

transformed as X 5 TV, where T is a complex-valued

L-by-L transformation matrix. Here, V contains a dwell

worth of time series data [i.e., the in-phase and quadrature

(IQ) signals], where L is the number of consecutive

samples in range time, and M is the number of samples

(or transmitted pulses) in the dwell time. For the estima-

tion stage, sets ofL correlations (one set for each required

lag) are estimated from X. The L correlation estimates

from each set are then incoherently averaged and used to

compute radar-variable estimates with reduced variance.

For example, a whitening transformation T produces un-

correlated samples and leads to maximum variance re-

duction when the signal-to-noise ratio (SNR) is high. A

whitening transformation can be easily obtained from the

range correlation of the oversampled signals (Torres and

Zrnić 2003), which depends on the transmitter pulse, the

distribution of scatterers in the resolution volume, and

the receiver filter. Under the assumption of uniform

distribution of scatterers in the resolution volume (i.e.,

no reflectivity gradients), the range correlation is only a

function of the modified pulse, which is defined as the

convolution of the transmitter pulse and the receiver-

filter impulse response. Unfortunately, in addition to

decorrelating the signal, the whitening transformation

increases the noise power; at low SNR, this can offset the

benefits of averaging independent estimates. The noise-

power gain of the transformation is referred to as the

noise enhancement factor (NEF).

The original assumption used in the development

of range-oversampling processing was that the re-

ceiver bandwidth would be increased by the range-

oversampling factor (i.e., L times). This introduces

negligible range correlation in the noise, which is typi-

cally white at the input of the receiver filter (Torres and

Zrnić 2003). The white-noise assumption was used to

derive theoretical expressions for the variance of radar-

variable estimates and to quantify the performance of

range-oversampling processing in terms of variance re-

duction. Also, theoretical variance expressions based

on the white-noise assumption were used to developCorresponding author: SebastiánTorres, sebastian.torres@noaa.gov
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closed-form solutions for adaptive pseudowhitening

(Curtis and Torres 2014). The adaptive-pseudowhitening

technique uses estimates of the input-signal characteris-

tics to select an optimal pseudowhitening transformation

that produces radar-variable estimates with minimum

variance by limiting the amount of noise enhancement at

the cost of less decorrelation. For example, adaptive

pseudowhitening uses a whitening transformation at high

SNRs when the noise enhancement effect is negligible

and gradually transitions into a matched-filter-like

transformation at low SNRs to reduce the noise power

when it is more critical.

In general, the adaptive-pseudowhitening transforma-

tion T is different for every radar variable. Therefore, a

direct application of these different transformations

results in multiple versions of the time series data, and

other signal-processing techniques that operate on the

time series data, such as ground-clutter filtering, must

be applied to each version. Rather than operating on

several versions of time series data, an efficient im-

plementation was developed to reduce the computa-

tional complexity (Curtis and Torres 2011). In the

efficient implementation, there is a single transforma-

tion stage for all the radar variables that consists of a

decorrelating transformation, and the estimation stage

utilizes a weighted average specific to each radar vari-

able. Thus, the transformation stage is given by ~X5
U*TV, where the decorrelating transformation U*T is a

unitary matrix that comes from the eigendecomposition

of the range correlation of oversampled signals CV. In

mathematical terms, CV 5 U*LUT, where the asterisk

and T superscripts denote complex conjugation and

matrix transpose, respectively. In practice, CV can be

measured in real time from the data using the procedure

described by Curtis and Torres (2013). The vector of

radar-variable-specific adaptive weights du depends on

estimated signal characteristics and is used to average

the range-oversampled correlation estimates needed

for the computation of each radar variable. That is,

RX(k)5�L21

l50 du(l)R
(l)
~X
(k), where u is a generic radar

variable, k is the correlation lag, and RX(k) is any of the

correlation estimates needed to compute u. Therefore,

RX(k) is calculated from a weighted average of L range-

oversampled correlations R
(l)
~X
(k) [cf. Eq. (10) in Curtis

and Torres (2011)].

Although adaptive pseudowhitening produces datawith

improved quality for a wide range of signal characteristics,

the original implementation relies on explicit expressions

of the variances of radar-variable estimates. To remove

this limitation, Curtis and Torres (2017) developed

a procedure that extends adaptive pseudowhitening

to be compatible with nontraditional radar-variable esti-

mators, which do not have explicit variance expressions.

That is, instead of computing the adaptive weights

for the estimation stage using analytical solutions

based on explicit variance expressions, the so-called

lookup-table (LUT) adaptive-pseudowhitening tech-

nique obtains the adaptive weights from tables created

through simulations. As a side benefit, LUT adaptive

pseudowhitening removes the need to assume the tradi-

tional model of a signal in additivewhite noise. Because the

lookup tables are derived from simulations, the noise can

be modeled as having any range correlation. Therefore,

with the introduction of LUT adaptive pseudowhitening, it

is possible to forgo the white-noise assumption and con-

sider the use of receiver filters with narrower bandwidths,

even if they introduce range correlation in the noise.

The receiver filter has an important role in determining

the performance of range-oversampling processing. It

contributes to the range correlation of the signal, and

it determines the range correlation of the noise.

Furthermore, its bandwidth determines the noise power

in the baseband time series data. Also, narrower receiver

bandwidths introduce additional correlation in the signal.

Because the signal is more correlated, it is more

‘‘difficult’’ to decorrelate, and this results in a larger NEF.

However, because the receiver bandwidth is narrower, it

lets less noise through. In this work, we examine this

trade-off to determine the optimum receiver bandwidth

when using LUT adaptive pseudowhitening.

The rest of paper is organized as follows. Section 2

describes the necessary modifications to the LUT

adaptive-pseudowhitening technique to accommodate

correlated noise. In section 3, realistic simulations that

include the effects of the receiver filter are used to

identify the optimum receiver bandwidth for LUT

adaptive pseudowhitening. These results are verified in

section 4 using data collected with the research KOUN

radar in Norman, Oklahoma. Section 5 concludes with a

summary of findings and recommendations for the im-

plementation of range oversampling on operational

weather radars.

2. Modifications to LUT adaptive pseudowhitening

The current implementation of LUT adaptive

pseudowhitening assumes that the noise prior to the

transformation stage is white. However, in this work, we

consider the use of receiver filters with narrower band-

widths, which may result in noise that is correlated in the

range-time dimension. Hence, it is important to first

identify any modifications to the technique needed to

accommodate this departure from initial assumptions.

As mentioned before, LUT adaptive pseudowhitening

relies on lookup tables to determine the adaptive

weights for the estimation stage of range-oversampling
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processing. A one-time process to generate lookup tables

using simulations was described by Curtis and Torres

(2017). In essence, the original steps involve 1) simulating

a large number of realizations of range-oversampled

weather signals with prescribed range correlation and ad-

ditive white noise, and 2) finding optimal adaptive weights

that minimize the mean-square error of radar-variable

estimates for each set of signal characteristics. Thus, to

accommodate the use of receiver filters with narrower

bandwidths, the simulation step must be modified to use

correlated noise instead of white noise. A relatively simple

way to simulate noise with the proper range correlation is

to pass white noise through the desired receiver filter. This

can be accomplished by convolving a simulated white

noise sequence with the receiver-filter impulse response.

To complete the simulation step, the resulting correlated

noise must be added to the weather signal.

Further, the LUT adaptive-pseudowhitening pro-

cessing steps include the computation of radar variables

using both a digital matched filter (DMF) and appro-

priate pseudowhitening transformations. Some of these

radar variables require a noise-power estimate (e.g., reflec-

tivity), which is obtained from the measured input noise

power scaled by the transformation NEF. In general,

the NEF is defined as the ratio of the noise powers

before and after range-oversampling processing. A

closed-form expression for the NEF when using adaptive

pseudowhitening can be derived assuming only noise is

present at the input. Let VN be an L-by-M matrix of time

series noise samples after the receiver filter but before

adaptive-pseudowhitening processing; these samples could

potentially be correlated. Assuming the noise samples are

zero mean, the L-by-L range correlation matrix is defined

as RVN
5E[VN

*VT
N], where E[ ] denotes expected value,

and the corresponding normalized range correlationmatrix

is CVN
5 RVN

/NV , where NV is the noise power before

processing. After the transformation stage, ~XN 5U*TVN ,

the range correlation of the transformed data is given by

R ~XN
5E ~X

N
* ~XT

N

h i
5E UTV

N
*VT

NU*
� �

5UTR
VN
U*

5N
V
(UTC

VN
U*).

The diagonal elements of this matrix are the L noise

powers or lag-0 range correlations R
(l)
~X
(0) described in

the previous section. Hence, the noise power after the

weighted average in the estimation stage is

N
X
5R

XN
(0)5 �

L21

l50

d
u
(l)R

(l)
~XN

(0)5 �
L21

l50

d
u
(l)(R ~XN

)
ll
,

where du(l) are the corresponding radar-variable-specific

adaptive weights obtained from the lookup tables, and

(A)ll denotes the lth element in the diagonal of matrix

A. We can now compute the NEF for a variable u as

follows:

NEF(u)5
N

X

N
V

5
1

N
V

�
L21

l50

d
u
(l)(R ~XN

)
ll

5 �
L21

l50

d
u
(l)(UTC

VN
U*)

ll
. (1)

If the noise is white, CVN
and UTU*are both identity

matrices (U is unitary), and Eq. (1) reduces to

NEF(u)5 �
L21

l50

d
u
(l) , (2)

which agrees with Eq. (13) in Curtis and Torres (2011).

In summary, two modifications are needed to use

LUT adaptive pseudowhitening with range-correlated

noise: 1) properly simulating the range-correlated noise

when producing the lookup tables and 2) using the

correct noise power when estimating the radar variables

in the processing stage.

3. Simulation analysis

Having a modified version of the LUT adaptive-

pseudowhitening technique that can accommodate

range-correlated noise, we now use realistic simulations

to quantify the impacts of using receiver filters with

different bandwidths: from the conventional matched

filter, to a bandwidth that isL times as wide.We begin by

describing the signal-simulation approach used both for

the one-time generation of lookup tables and for the

actual performance evaluation.

a. Signal simulation

There are two main considerations for the simulation

of baseband range-oversampled IQ signals correspond-

ing to different receiver filters. The first one is that noise

samples at the output of the receiver filter may be cor-

related in range. That is, the noise at the input of the

receiver filter is white but becomes correlated after be-

ing filtered. The second consideration is that receiver

filters in typical modern radar systems operate on signals

that are sampled at the intermediate frequency (IF).

Thus, a realistic simulation that includes the effects of

practical receiver filters should use signals sampled at

the IF. In summary, the signal simulation procedure

involves three steps: 1) the simulation of conventional

weather signals in additive white noise, 2) the convolu-

tion of these signals with the impulse response of the

desired receiver filter, and 3) the decimation of the

resulting signal by an appropriate factor to produce IQ
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samples at the baseband (range oversampled) rate. This

process is described next in more detail.

Using methods analogous to those developed by

Curtis (2018), we start by simulatingR sets ofL3D1Nt

independent realizations ofM-sample, dual-polarization,

weather signals with Gaussian Doppler spectrum and

predefined signal characteristics (i.e., SNR, Doppler

velocity, spectrum width, differential reflectivity, dif-

ferential phase, and correlation coefficient). Here, R

is the number of independent measurements used to

compute radar-variable estimate statistics, which needs

to be large enough to provide robustness to the empir-

ical statistics obtained from theMonte Carlo simulation;

L is the desired range-oversampling factor; andD is the

required decimation factor to go from IF to baseband

sampling. Last, Nt 5 Np 1 F 2 2 is the number of extra

samples needed to accommodate the convolution with

the Np-sample transmitter pulse and the F-tap finite-

impulse-response (FIR) receiver filter. Note that the

assumed range-time sampling rate is given by the IF, and

the sample-time sampling rate is given by the pulse

repetition time (PRT).

The processing described next is performed in the

range-time dimension and is independently repeated

along the sample-time and polarization-channel di-

mensions. First, the weather signals are convolved with

the Np-sample transmitter pulse (also sampled at the IF

rate) to produceR sets ofL3D1 F2 1 signals with the

required range correlation at the input of the receiver

filter. Next, R sets of L 3 D 1 F 2 1 independent re-

alizations ofM-sample white noise for each polarization

channel (horizontal and vertical) are simulated and

added to the weather signals. These signal-plus-noise

samples are convolved with the F-sample receiver-filter

impulse response; this completes the shaping of the

weather signal’s range correlation and imposes the cor-

responding range correlation to the noise. Last, the re-

sulting R sets of L 3 D receiver-filter outputs are

decimated by a factor of D to obtain R sets of L samples

at the desired range-oversampling rate of cL/(2Dr), where
c is the speed of light and Dr is the desired range spacing

of the radar variables (i.e., after signal processing). In

practice,Dmust be chosen so that fIF5 cLD/(2Dr), which
makes sense because the radar IF is typically selected as

an integer multiple of the reciprocal of the required IQ

range-time sample spacing [2Dr/(cL)]. Ultimately, this

process produces R independent sets of L-by-M dual-

polarization signal-plus-noise samples with appropriate

range, sample, and cross-channel correlations.

For our analysis, we selected the IF receiver filter that

matches the one used on the Weather Surveillance

Radar-1988 Doppler (WSR-88D); it is an FIR filter

designed using the well-known window method (e.g.,

Oppenheim and Schafer 1989). This method starts with

the impulse response of an ideal low-pass filter:

h(n)5
sin(pBn)

pn
, n 2 Z , (3)

where B is the normalized bandwidth of the low-pass

filter in hertz. Because this filter is noncausal and infi-

nitely long, it is truncated and tapered with a window.

Thus, the desired FIR filter taps are obtained as

h
FIR

(n)5w[n2 (F2 1)/2]h[n2 (F2 1)/2],

n5 0, 1, . . . , F2 1, (4)

where F is the length of the FIR filter (assumed to be

odd to simplify this description), w is the F-sample

window (the signal processor on the WSR-88D uses the

Hamming window), and the indexing on the right-hand

side takes care of the necessary shift to make the filter

causal. Note that, because of the application of a win-

dow, the resulting filter bandwidth is generally larger

than B. Because we are looking for filters with specific

bandwidths, we automated the filter design by means

of a minimization process where the objective function

is the square of the difference between the actual and

desired filter bandwidths.

b. Lookup-table generation

Ingeneral, the lookup tables for adaptivepseudowhitening

are robust to changes in the modified pulse (Curtis

and Torres 2017). However, for different receiver fil-

ters, both the modified pulse and the range correla-

tion of the noise are different. As will be verified later,

this requires unique sets of lookup tables. Thus, for

our analysis, we generated lookup tables for each re-

ceiver filter using the procedure introduced by Curtis

and Torres (2017) with the modification in section 2.

That is, the simulation step was carried out using the

procedure described in section 3a above. Despite the

fact that we had to generate several sets of lookup tables

(producing each set of lookup tables takes about 1 h in a

conventional desktop computer running the MATLAB

software), this procedure has to be done only once:

the generated lookup tables are saved, and they are

simply recalled during LUT adaptive-pseudowhitening

processing.

c. Performance evaluation

Here, we use the simulation framework described in

section 3a to determine the optimum receiver band-

width for LUT adaptive pseudowhitening. In this con-

text, optimality is assessed in terms of the variance

of radar-variable estimates obtained after processing.
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That is, the optimum receiver bandwidth is the one that

leads to the smallest variance of estimates when using

LUT adaptive-pseudowhitening processing. To do this,

we simulated signals as described in section 3a, gener-

ated lookup tables as described in section 3b, and pro-

duced radar-variable estimates using the LUT adaptive

pseudowhitening processing with the modifications de-

scribed in the latter part of section 2.

The receiver filter was designed with F5 200 taps, and

we used the nominal 1.54-ms WSR-88D ‘‘short’’ trans-

mitter pulse with 200-ns rise and fall times. We repeated

the simulation for five different receiver filters with

B6t products of 1, 2, 3, 4, and 5, where B6 is the 6-dB

receiver-filter bandwidth and t is the 6-dB transmitter

pulse width. Note that B6t 5 1 corresponds to an ap-

proximately matched receiver filter, which is typically

used on weather radars (Zrnić and Doviak 1978); B6t 5
5 corresponds to a receiver filter with a bandwidth that is

5 times as wide as the matched filter (i.e., it is wider by

the range-oversampling factor) as was originally pro-

posed to accommodate range-oversampling processing.

Figure 1 shows the frequency responses of the five re-

ceiver filters in the simulation; Fig. 2 depicts the cor-

responding modified pulses, and Fig. 3 shows the

corresponding normalized range correlations for range-

oversampled weather signals. As expected, when the

receiver filter bandwidth gets smaller, the modified

pulse has smoother transitions, and the range correla-

tion at higher lags is larger.

For the simulation, we started with signals sampled at

the WSR-88D IF of fIF 5 95 915 167Hz and ended with

radar variables spaced by Dr 5 250m after processing.

Also, we utilized a range-oversampling factor of L 5 5,

which is the recommended value for a future opera-

tional implementation of range-oversampling process-

ing. Thus, the decimation factor was obtained as D 5
2DrfIF/(cL) 5 32, which leads to baseband IQ samples

with 50-m range spacing (i.e., 5-times oversampling in

range). Signals were simulated (R5 7000) with the dwell

parameters of the lowest elevation angle in NEXRAD’s

Volume Coverage Pattern 12. That is, for the estimation

FIG. 1. Frequency response of the five simulated receiver filters.

The filter bandwidth increases with the B6t product. Assuming

white noise at the input, the noise power at the output of these

filters also increases with the B6t product.

FIG. 2. Modified pulse corresponding to each of the five simu-

lated receiver filters when using the ‘‘narrow’’ 1.54-ms transmitted

WSR-88D pulse. The modified pulse becomes smoother as the

B6t product decreases.

FIG. 3. Normalized range correlation of the weather signal cor-

responding to each of the five simulated receiver filters. The range

correlation at higher lags increases as the B6t product decreases.

For a given transformation, the noise enhancement factor also in-

creases as the B6t product decreases.
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of reflectivity and the polarimetric variables, we used

M 5 15 samples per dwell and a PRT of 3.1ms (leading

to a Nyquist velocity ya 5 8.6m s21). For the estimation

of velocity and spectrum width, we used M 5 40 and a

PRT of 1ms (ya 5 27.1m s21). For the weather signal,

the Doppler velocity was fixed at 0m s21, the spectrum

width was fixed at 2m s21, the differential reflectivity

was fixed at 0 dB, the differential phase was fixed at 08,
and the correlation coefficient was fixed at 0.99. Note

that the arbitrary choice of these dwell parameters and

signal characteristics does not preclude us from gener-

alizing our results.Whereas changes to these parameters

may result in changes to the variance of radar-variable

estimates, in this work, we are just interested in the

relative performance of different receiver filters with

respect to range-oversampling processing, both of which

operate solely in the range-time dimension. Thus, nei-

ther dwell parameters (M and the PRT) nor sample-

time signal characteristics (Doppler velocity, spectrum

width, and the polarimetric characteristics) influence

our results. The only relevant parameters for our anal-

ysis are the SNR, the range correlation of the baseband

IQ weather and noise samples, and the lookup tables

used in range-oversampling processing.

Figure 4 shows the variance improvement factor as a

function of the SNR for estimates of reflectivity, veloc-

ity, spectrum width, differential reflectivity, differential

phase, and correlation coefficient obtained with LUT

adaptive-pseudowhitening processing for each of the

five receiver filters with respect to estimates obtained

with a receiver filter with 5-times-as-wide bandwidth.

The SNR prior to the receiver filter ranges from 220 to

24 dB in steps of 2 dB, and we assumed that the noise

powers in the horizontal and vertical channels are equal.

For the abscissa, we chose the SNR after the receiver

filter withB6t5 1 since it is the one conventionally used

in operations for radar-data thresholding (censoring).

It can be seen from this figure that the best perfor-

mance (i.e., the largest variance improvement factor or,

equivalently, the smallest variance) for all radar vari-

ables is consistently achieved when the receiver filter is

matched to the width of the transmitter pulse (i.e.,B6t5
1 and the solid blue line). In addition, the dashed blue

curve shows the performance for B6t 5 1 with lookup

tables obtained using white noise instead of correlated

noise. This corresponds to using the original lookup-

table generation procedure that does not take into

account the range correlation of the noise in the simu-

lations. The observed suboptimal performance (relative

to the solid blue curve) comes from using lookup tables

generated with white noise and applying them to data

with correlated noise, which illustrates the need for the

modifications to the lookup-table generation procedure

as described in section 2. Although not shown here, the

optimality of the matched filter was also observed for

different dwell parameters (M and ya) and signal char-

acteristics. We verified this by spot-checking several

cases using relatively extreme parameters; in all of them,

using a matched filter resulted in the largest variance

improvement factor.

The optimality of the matched filter was indeed a

surprising finding given that the original assumption

was that the receiver filter bandwidth had to increase

by the range-oversampling factor to accommodate the

faster receiver sampling rates required for range over-

sampling. It turns out that the reduction in noise power

provided by the matched filter more than makes up

for the increase in noise enhancement due to the

more correlated signal. On the basis of these results,

upgrading a radar system to incorporate range over-

sampling should require nomodifications to the receiver

filter, which is already matched to the transmitted pulse

in most systems.

4. Real-data analysis

In this section, we empirically validate the results from

section 3 using real data. As mentioned before, the re-

sults in section 3 only depend on the SNR, the range

correlation of the weather and noise samples, and

the lookup tables used for processing. Of these, only

the SNR depends on the weather scenario. Thus, a

single case with a wide range of SNR values is sufficient

to validate the simulation results. At approximately

0103 UTC 1 December 2018, we collected range-

oversampled IQ data from severe storms in central

Oklahoma using the S-band, dual-polarization, research

KOUN radar in Norman. Two sets of 50-m oversampled

data (L 5 5) were collected with both a matched filter

(B6t 5 1) and a filter with 5-times-as-wide bandwidth

(B6t 5 5). Thus, after range-oversampling processing,

the range gate spacing was 250m. The antenna was

stationary and pointed at an azimuth of 1938 to capture

a wide range of SNRs while avoiding range-overlaid

echoes. Under the assumption that storms do not sig-

nificantly change in the few seconds that it takes to

collect the data, this mode of operation provides a

practical means to obtain multiple dwells from the same

storm configuration. These dwells can be thought of as

approximate independent ‘‘realizations’’ of IQ signals

that can be processed to extract meaningful statistical

information about radar-variable estimates. A PRT of

1ms was employed, resulting in a Nyquist velocity ya 5
27.7m s21. We collected and processed 200 dwells of

data for each receiver-filter configuration using 16 sam-

ples per dwell. That is, for each receiver configuration,
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FIG. 4. Variance improvement factor corresponding to estimates of (top left), reflectivity, (middle left), Doppler

velocity, (bottom left) spectrum width, (top right) differential reflectivity, (middle right) differential phase, and

(bottom right) correlation coefficient using LUT adaptive-pseudowhitening processing with different receiver

filters as a function of the SNR at the output of the receiver matched filter. The variance improvement factor is

computed relative to the performance of the receiver filter with a 5-times-as-wide bandwidth. The solid curves

correspond to using LUTs generated for the appropriate receiver filter with the modifications introduced in

section 2 (i.e., properly simulating range-correlated noise at the output of the receiver filter). The dashed curve

corresponds to a receiver matched filter (B6t 5 1) but using LUTs generated under the (incorrect) assumption of

white noise at the output of the receiver filter.
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the collection time was 3.2 s; however, there were ap-

proximately 45 s between collections that allowed for

the reconfiguration of the receiver filter. Last, we

measured the range correlation (Curtis and Torres

2013) from each set of data to ensure that the decor-

relation transformation (U*T) was accurately computed

from the appropriate CV for both cases. The same

lookup tables that were computed for the different

filter bandwidths in section 3 were used to implement

LUT adaptive pseudowhitening (B6t5 1 and B6t5 5).

Figure 5 shows the mean SNR (Fig. 5, top panel), the

reflectivity (Fig. 5, middle panel), and the standard de-

viation of reflectivity estimates (Fig. 5, bottom panel)

corresponding to the data from both receiver filters. The

results are plotted for 100 range gates located between

57.5 and 82.25 km to capture a wide range of SNR

values. To account for advection between collections,

the data from the second collection (corresponding to

the larger receiver bandwidth) were shifted by four

range gates (1 km). The SNRplots show that the average

signal power was similar for both cases with some minor

differences related to echo fluctuations and storm evo-

lution in the time between collections. To compare es-

timation errors, the standard deviation of reflectivity

estimates was selected to ensure that the power differ-

ences would not affect the results. From 57.5 km (the

start of the data) to about 70 km, the narrower, matched

filter bandwidth results in better performance. Beyond

about 70 km, the performance is similar for both re-

ceiver filters. This is consistent with the simulation re-

sults in Fig. 4, where the B6t 5 1 standard deviation is

noticeably smaller for SNRs below 20 dB but is com-

parable to the B6t 5 5 standard deviation above 20dB.

In addition to agreeing with the simulation results, this

corroborates that range-oversampling processing can be

implemented without having to increase the receiver

bandwidth. If LUT adaptive pseudowhitening is used,

the performance is better with the receiver matched

filter, especially at lower SNRs.

5. Conclusions

We investigated the role of the receiver filter in the

performance of range-oversampling processing and

determined that a receiver matched filter leads to the

best performance in terms of the variance of radar-

variable estimates and, more importantly, leads to a

simpler practical implementation. However, whereas

previous formulations of range-oversampling process-

ing relied on the assumption that the noise was white

prior to the transformation stage, the use of a receiver

matched filter on range-oversampled data leads to

correlated noise. Fortunately, the recently developed

LUT adaptive-pseudowhitening technique can accom-

modate correlated noise with two minor modifications.

The first modification is in the simulations used for the

one-time generation of lookup tables. Instead of white

noise, range-correlated noise obtained by applying the

receiver matched filter must be added to the simulated

weather signals. The second modification is in the real-

time processing steps, where the computation of the

noise power after the transformation was revised to ac-

commodate the range correlation of the noise.

Simulations involving receiver filters with varying

bandwidths revealed that the use of a conventional

matched filter leads to the lowest variance of radar-

variable estimates when compared to filters with wider

bandwidths. The improvement occurs at low-to-medium

SNRs because a receiver filter with a narrower bandwidth

FIG. 5. Data collected with the KOUN radar on 1 Dec 2018 using

a stationary antenna with a receiver matched filter (B6t 5 1) and a

filter with 5-times-as-wide bandwidth (B6t 5 5). For each case, 200

dwells with M 5 16 samples each were processed using LUT

adaptive pseudowhitening. Shown are (top) the ratio of the mean

signal power to the matched-filter noise power (same as the ab-

scissa in Fig. 4), (middle) the corresponding reflectivity estimates,

and (bottom) the standard deviation of reflectivity estimates, all as

a function of range in kilometers. The range-gate spacing is 250m.
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results in less noise power at its output. This seems to

dominate the noise enhancement effect from the addi-

tional range correlation of the weather signal. Simulation

results were validated using data collected with the re-

search KOUN radar. The analysis of data collected with

both a receiver matched filter and a receiver filter with

L-times-as-wide bandwidth confirmed that the standard

deviation of reflectivity estimates was lower for the data

collected with the receiver matched filter when the SNR

was low. As expected, at higher SNR values (above

20dB), the performance of both receiver filters was very

similar.

As a side benefit, relative to using wider receiver

bandwidths, the use of a receiver matched filter re-

sults in increased data coverage as a result of an im-

provement in the SNR. That is, with LUT adaptive

pseudowhitening, a DMF is used to produce estimates

of the SNR that are used for thresholding purposes

(i.e., to censor data corresponding to nonsignificant

returns). Because the receiver matched filter provides

an additional small improvement in post-DMF SNR

relative to the widest receiver bandwidth (;0.6 dB for

the pulse and the filters in this study), it leads to fewer

data being thresholded (censored).

In conclusion, range-oversampling processing per-

forms best when using a receiver matched filter.

Because most operational weather radars already em-

ploy a receiver filter that is matched to the transmitter

pulse, implementing range-oversampling processing

does not require modifications to the receiver filter.

This should facilitate implementations of range-

oversampling processing on operational weather radars

like the WSR-88D.
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